An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages
نویسندگان
چکیده
BACKGROUND In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. METHODOLOGY/PRINCIPAL FINDINGS We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. CONCLUSIONS/SIGNIFICANCE Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.
منابع مشابه
Hemophagocytic Macrophages Harbor Salmonella enterica during Persistent Infection
Salmonella enterica subspecies can establish persistent, systemic infections in mammals, including human typhoid fever. Persistent S. enterica disease is characterized by an initial acute infection that develops into an asymptomatic chronic infection. During both the acute and persistent stages, the bacteria generally reside within professional phagocytes, usually macrophages. It is unclear how...
متن کاملSalmonella typhimurium invasion induces apoptosis in infected macrophages.
Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S...
متن کاملSalmonella enterica Infection Stimulates Macrophages to Hemophagocytose
UNLABELLED Hemophagocytes are cells of the monocyte lineage that have engulfed erythrocytes and leukocytes. Hemophagocytes frequently accumulate in patients with severe acute bacterial infections, such as those caused by Salmonella enterica, Brucella abortus, and Mycobacterium tuberculosis. The relationship between hemophagocytosis and infection is not well understood. In the murine liver, S. e...
متن کاملContribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages
The ability of serovars of Salmonella enterica to cause systemic disease is dependent upon their survival and replication within macrophages. To do this, bacteria must withstand or surmount bacteriostatic and bactericidal responses by the host cell, including the delivery of hydrolytic enzymes from lysosomes to the phagosome. The bacterial two-component regulatory system PhoP/Q has been implica...
متن کاملInvestigation of the Role of Genes Encoding Zinc Exporters zntA, zitB, and fieF during Salmonella Typhimurium Infection
The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed deletion mutants for genes encoding zinc exporters (zntA, zitB, and fieF) in the wild-type (WT) strain S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010